Dlaczego SI? Bo to się opłaca!
Pojawia się oczywiście pytanie o przyczyny takiego zachowania – dlaczego firmy udają, że dysponują rozwiązaniami, które w rzeczywistości nie istnieją? – Na pierwszym miejscu należy wymienić pieniądze – wyjaśnia Stockem. – Sztuczna inteligencja to temat, który kręci inwestorów. Wielu z nich nie zadaje zbyt wielu pytań, nie wnika w prace zespołu, tylko wyciąga portfel, kiedy pada magiczna fraza „artificial intelligence”. Kiedyś w Stanach Zjednoczonych cudownym produktem do wszystkiego był olej z węża. Dzisiaj tę rolę spełnia sztuczna inteligencja. Wystarczy spojrzeć na liczbę firm, które korzystają z domeny.ai – w ciągu kilku ostatnich lat ich liczba uległa podwojeniu.
Potwierdzają to dane udostępnione przez firmę PitchBook. W roku 2010 fundusze venture capital zainwestowały w sztuczną inteligencję mniej niż 500 mln dolarów. W roku 2017 było to już blisko 11 mld dolarów. Firma MMC Ventures informowała parę lat temu w swym raporcie, że startupy, które przedstawiają się jako pracujące nad sztuczną inteligencją, mogą uzyskać finansowanie o 50 proc. większe od innych przedsiębiorstw software’owych. Ten sam podmiot donosił, że aż 40 proc. europejskich startupów zaliczanych do branży SI, w rzeczywistości nie używa rozwiązań tego typu.
Problem dotyczy także tych firm, które korzystają z owoców uczenia maszynowego – nierzadko przybiera to banalną formę. Zamiast rozwiązań choć trochę przypominających pracę ludzkiego mózgu, oferują one bardzo proste czatboty. Warto jednak podkreślić, że odbiorców w błąd nie wprowadzają wyłącznie firmy – czasem robią to np. przedstawiciele mediów czy funduszy inwestycyjnych, którzy słabo orientują się w temacie i widzą SI wszędzie tam, gdzie pojawiają się słowa startup i automatyzacja czy robotyzacja. – Niektórym wydaje się, że automatyzacja to już sztuczna inteligencja. Tymczasem różnica jest olbrzymia. Ta pierwsza może sprawiać wrażenie „smart”, ale nie jest w stanie się uczyć, rozumieć danych. Rozwiązania tego typu są przydatne, lecz robią tylko to, czego zostały nauczone. Sztuczna inteligencja idzie znacznie dalej, potrafi naśladować ludzki mózg i samodzielnie uczy się rozwiązywać problemy. Takie narzędzie może sobie radzić nawet z bardzo skomplikowanymi zadaniami. Haczyk polega na tym, że stworzenie SI z prawdziwego zdarzenia wymaga masy danych i pieniędzy. Wielu firm po prostu nie stać na tworzenie czegoś tak skomplikowanego – konkluduje prezes Nethansy.
Powodem, dla którego firmy naginają fakty i przekonują, że dysponują sztuczną inteligencją może być zatem chęć wstępnego zbadania nieznanych wód i to z zamiarem wypłynięcia na nie. Część startupów naprawdę chce stworzyć SI i wykorzystać ją do konkretnego celu. Wcześniej próbują jednak dowiedzieć się, czy rynek będzie zainteresowany ich pomysłem, produktem. Korzystają zatem z pracy ludzi, którzy udając maszyny, pokazują, jak może wyglądać przyszłość. Także i w tym przypadku sprawa rozbija się o pieniądze – jeżeli ktoś poświęca dużo czasu i górę gotówki na jakiś projekt, chce mieć pewność, że potem go sprzeda. Oczywiście nie usprawiedliwia to okłamywania odbiorców.